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A limit form of Richardson extrapolation is used to obtain interpolation formulae with 
accuracy of a higher degree than that obtained with the variation diminishing spline 
approximation. c> 1985 Academic Press, Inc. 

1. INTRODUCTION 

Schoenberg [4] has shown how fundamental interpolation formulae may be 
written in the form 

(1) 
j= -02 

for an equi-spaced grid such that x,=jh (Schoenberg takes h = 1). The inter- 
polation is said to be ordinary wheny(x,, h) =f(x,) and smoothing whenT(x,, h) # 
f(xj) and the characteristic function 

d(u) := f L(j, 1) e’/“, 

satisfies 4(O) = 1 and 141 d 1. Schoenberg [4] has also shown that the interpolatory 
properties of (1) can be described in terms of the Fourier transforms of L. If we use 
the definition 

g(t) := SE L(x, h) cos(27ctx) dx, 
x 

(2) 

then (1) will reproduce polynomials of degree k - 1 provided (a) g(t) - h has a zero 
of order k at t = 0 and (b) g(t) has zeros of order k at the points th = f 1, f2,.... 

Schoenberg introduced a fundamental set of interpolating kernels, the central B 
splines, so that (l), in his notation, becomes 
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where M,(u, h) is the nth central B spline (of order n, i.e., degree 12 - 1). The basis 
spline M,(u, h) is the triangular function defined by 

M,(u, h) = 1 - lul//z; I4 Gk 
(4) = 0; otherwise, 

which gives the area weighting interpolation used in particle simulations. The ker- 
nel M, leads to an ordinary interpolation formula. The higher order M, give 
smoothing interpolation formulae. The functions M, and their first n - 2 derivatives 
are continuous. For this reason, in particle simulations (e.g., Hackney and 
Eastwood [2]) interpolation is usually carried out with M,. The Fourier transform 
of M,(x, h) is (Schoenberg [ 1 ] who replaces t by u/2x) 

s(t) := j_“, 44,(x, h) cos(2xxt) dx = h 
sin(&) n [ 1 - 

(nth) 

and, for t m 0, g(t) N h - m2t2h3/6. Referring to the conditions above we find that 
the basis splines only achieve linear interpolation. 

The aim of this paper is to show how, starting with interpolants based on M,, 
higher order interpolation formulae can be constructed. Schoenberg [ 1,4] has also 
derived higher order interpolation formulae. However, the method we use differs 
from those used by Schoenberg and the interpolants we find appear to be new. 

2. INTEGRAL FORM 

There is a considerable analytical convenience in working with an integral rather 
than the sum in (1). The error involved in switching from one to the other can be 
estimated using the Poisson summation formula. We find 

5 fiW,(x-x,, h,=j" f(uh) M,(x - uh, h) du + E,(h), 
j= -m -cc 

where 

E,,(h) = 2 2 ja; f(uh) M,(x - uh, h) cos(2m) du. 
r=l --oo 

If we expand f(uh) about the point uh = x we find 

(6) 

(7) 

(8) 



EXTRAPOLATING B SPINES 255 

where 

Z,,(x, h) : = y o”M,(u, h) cos[27rr(x - o)/h] dw 
-‘x 

= cos(27rrx/h) C,, + sin(27crx/h) S,, 
(9) 

with 

c,, := jm o”M,(w, h) cos(27cnwr/h) do (=Oforaodd) 
--co 

s,, := J* w”M,(w, h) sin(2rcmr/h) do (=Oforaeven). 
--LI 

Upon differentiating the integral in (5) with respect to t we see that, except possibly 
for a sign, the nonzero values of C, and S,, are given by g(“)(t)/(2rr)” at t = r/h. 
And this, upon differentiating the right hand side of (5), is seen to be 
h(h/2)” $(“)(w), where 

$(a) := (sin a/a)” 

is entire and has zeroes of order n at +x, + 27c,.... Hence the inner sum in (8) 
begins at a = n, so 

c,(h)ah”. (10) 

In general, if the kernel has a Fourier transform g(r) which has a zero of order n at 
th=+l +2 - , - ,*-*, then E,(h)ah”. For our problem we see that we can use the integral 
in (6) in place of the summation in (1) provided n > 3 since then the error c,(h) is of 
higher degree in h than the interpolation error. Our interpolant is essentially 

f(x,h,=;JI f(x’)M,(x-x’,h)dx’; n > 3. (11) 00 

By expandingf(x’) about the point x we find 

f(x,h)=f(x)+f$Jy M,(u,h)u2du+ . . . . 
m (12) 

Since M,(u, h) is an even function of u all terms involving odd derivatives of f(x) 
vanish. From (5) we find 

s O” M,(u, h) u20 du = = O(h2”+ ‘), 
-02 r=o 

(13) 
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and (12) can be written 

7(x, h) =f(x) + u(x) h2 + . . . (14) 

Note that the error in the interpolant (11) is always of even degree in h and is 
O(P) if the Fourier transform of the kernel has the expansion 

g(t)-hat”. (15) 

Interpolants of the form (11) therefore reproduce polynomials of degree k - 1 
provided g(t) - h has a zero of order k at t = 0. They are equivalent to a summation 
interpolation formula which reproduces polynomials of degree k - 1 provided g(t) 
also has a zero of order k at the points th = f 1, + 2,.... 

3. RICHARDSON EXTRAPOLATION 

Returning now to (14) we wish to devise a means of eliminating the term a(x) h2. 
If we could do this the interpolation error in (11) would be O(/z4). Richardson 
extrapolation is a well-known way of improving the accuracy of a formula and we 
can apply it here since, for a uniform grid with separation H, 

7(x, H) =f(x) + a(x) HZ + . . . . (16) 

We can then combine (14) and (16) so as to remove the error term. In this way we 
find the new interpolant 

s ~Kf(xf) @,(x-x’, h, H) dx’, (17) 

where 

@ib,(u, h, H) = ; M,(u, h) -; M,(u, H) (18) 

The interpolant has errors of O(h4) but, as it stands, it is useless because the 
integration cannot be expressed accurately by a summation on either grid. To 
escape this difficulty we take the limit of (18) as H + h. We find 

Lim @,(u,h, H)=& 
aM 

3&f,-h-f 
> 

, (19) 
H-h 

and the new interpolation kernel 

W,,(u,h):= ; 
aM 

3M,-h$ 1 , (20) 



EXTRAPOLATING B SPINES 257 

where we require n 2 3 because otherwise the derivative of M, is not defined 
everywhere. The new integral interpolation formula now satisfies 

y(x,h)=;j; f(x’) W,(x-x’,h)dx’=f(x)+A(x)h4+ ..., 
cc 

but it will be clear from the earlier discussion that the practical interpolation for- 
mula 

S(x)= 5 f;.Wn(x-x~i,h), (22) 
j= --ic 

may not achieve the same accuracy. In fact, because W,, involves a derivative of 
M,, it will not be as smooth as M, and its Fourier transform will not vanish as 
quickly as that for M, as r + co. Since we require n >, 4 for s,(h) (see (10)) to be at 
least as small as 0(h4), and W,, is less smooth than M, we can expect that (22) will 
only achieve the same accuracy as (21) if n >4. These are only very rough 
arguments. They can be made more precise by using Schoenberg’s criteria. From 
(5) and (20) we find (setting (r = rcth) 

W=jm W,(u, h) cos(27cut) du 
--cc 

(23) 

Referring back to the rules given in the introduction, and noting also that 

G,(t)-h= - 
h(n- l)(lln-6)(7~th)~ 

360 (241 

as t + 0, we conclude that (22) will only achieve O(h4) interpolation if n Z 5. In this 
case the interpolation formula (22) will reproduce polynomials of degree 3. 

If n = 4 the new interpolation formula has errors of order h3 which, incidentally, 
is also the estimate of the error incurred, apart from trionometric functions, in 
switching from the integration (21) to the summation (22) (using (23) instead of (5) 
in the analogs of (6) through (10) its zeroes are third order). For this case 

W4(u, h)= *-$+$ OdU<l, 

= +(2-V)2(1 -u), ldV<2, (25) 
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where u = lul/h. This kernel gives an ordinary interpolation formula which 
reproduces polynomials of degree 2. The kernel W, and its first derivative are con- 
tinuous (the latter matches centred Iirst derivatives at the break points) so that, in 
its smoothness, W, is similar to M,. It is also similar to the kernel B(u, h) which 
gives Bessel’s interpolation formula if third and higher differences are neglected. 
This kernel is defined by 

B(u,h)=(l-u)(l+iu), O<u<l, 

=$(1-0)(2-u), 160<2. 
(26) 

B(u, h) has the same support, degree of polynomial reproduced (two) and order of 
accuracy (h3). It also leads to an ordinary interpolation formula. W, is smoother 
than B but its degree is higher. The kernel E(u, h) which gives Everett’s inter- 
polation formula (see also Schoenberg, [l] p. 57) if fourth and higher differences 
(they are all even order) are neglected, has the form 

E(u, h) = i(2 - u)( 1 -u2), O<uUl, 

=4(2-u)(3-u)(l-u), l$u<2. 
(27) 

This kernel also leads to ordinary interpolation, is of the same degree as W,, and is 
less smooth than W,, but its order of accuracy (h4) is higher. Because of its 
smoothness and accuracy W, would appear to be a good alternative to M, in par- 
ticle simulations. 

Finally we give the detailed form of W,(u, h), the first of the sequence of kernels 
to interpolate with errors O(h4): 

w,(u,h)=Q(u-g)3(7u-;), $<U<$, 

= $ (165/4 + 200 - 150~~ + 120~~ - 28u4), ;<U<;, 

= & (34518 - 75u2 + 42u4), o<u<+, 

= 0, otherwise. (28) 

W, and its first two derivatives are continuous. The resulting formula is a 
smoothing interpolation formula. Because of its complicated form it is probably of 
less practical value than (25) which, though less accurate, is simpler to use. 

4. EXTENSIONS TO OTHER KERNELS 

The procedure we have used to generate new interpolating kernels from the basis 
splines can be applied to other kernels. In most cases there are no complications, 
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but there are certain kernels useful in particle simulations which do not lit Schoen- 
berg’s analysis. As an example, consider the interpolation formula 

(29) 

where, typically, akh. This formula does not even reproduce a nonzero constant 
exactly. However it would be premature to dismiss it. As before we can convert the 
summation into an integration with an error which can be estimated from the 
Poisson summation formula. (Here we retain only the term with r = 1 since the con- 
tributions for r > 1, though of the same form are much smaller.) This error is 

2h jm f(uh) e-‘“-““‘2’“2cos(2nu) du, 
ah 

(30) 
-cc 

which is the real part of 

- n*a*/h* + Znxilh 

s 

m 
pmf(Uh) e- 

(h*/d)[u-ya2/2h2]* du 
9 (31) 

where 

q=7+2zi. 

By shifting the integration contour from the real axis to a straight line parallel to 
the real axis passing through the point qa2/2h2, we can write (31) as 

(33) 

which can be approximated in most cases by 

2exp -F+ 
[ 

z!gqf(x+g. (34) 

This result, apart from some slight notational changes, agrees with that found by 
Goodwin [S] for the case where x is zero (note that Goodwin’s error term is 
defined to be & times our error term). If f is a constant A and a = 1, the error is 
N 10e4 x A when h = 1 and 10-l’ x A when h = 0.5. Therefore the error involved in 
replacing the summation in (29) by an integration can be made negligible. If f (x) is 
not a constant (33) may need to be evaluated more carefully but the error can be 
made negligible by choosing a 2 h. We can therefore work with the interpolant 

7(x, a) = j_“‘f (xl) e-;;2’a2 dx’, (35) 
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taking a? h. By Taylor series expansion we find 

f(x, a) =f(x) +fT a2 + . . . (36) 

The previous arguments concerning Richardson extrapolation can be applied, and 
we can construct a new kernel W by replacing M, in (19) by the gaussian kernel in 
(29). We find 

W(u, a) = -u’/a2 3 u2 
--$e 2-2 

[ I 
(37) 

With this kernel the interpolant 

7(x, a) = sX f(x’) W(x -x’, a) dx’, 
-Iu 

(38) 

has errors of O(a4). The summation form of the interpolation formula interpolates 
with errors which are approximately of O(a4) but include errors in replacing the 
integration by a summation. This error is larger than that involved in using the 
gaussian kernel but by making a2 h this error can be made negligible. 

The Fourier transform of W(u, a) is 

i a W( u, a) cos( 27~) du = he ~ rt2r2u2( 1 + n2a2t2), (39) 

the rapid decrease with increasing t is due to the smoothness of W(u, a). When t is 
sufftciently small the Fourier transform (39) has the expansion 

h( 1 - 4n4a4t4), (40) 

which shows, again, that the integral interpolant (38) has errors of O(a4). 
In ordinary numerical practice the gaussian interpolation formulae are not very 

useful because their desirable smoothness is outweighed by the disadvantage that at 
least eight grid points may need to be used (we take the gaussian as negligible 
beyond -3a). Nevertheless the kernel (37) has been used effectively in particle 
simulations of shock tube phenomena (Monaghan and Gingold [3]). 

5. EXTENSIONS TO HIGHER DIMENSIONS 

To fix ideas we will consider the case of three dimensions. The simplest extension 
of our previous results is to use the interpolant 

~M,(J’-.Y,, h) Mn(Z-Zj, h), (41) 
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where we have assumed, for simplicity, that the grid has the same separation in 
each dimension and the basis splines have the same order for each dimension. The 
integral interpolant 

x’, y’, z’) M,(x - x’, h) M,( y -y’, h) M,(z -z’, h) dx’ dy’ dz’ 

(42) 

can be examined as before. The final result is that each M, can be replaced by a 
corresponding W, to achieve (when n > 5) interpolation of O(h4). 

A more interesting case occurs if we consider interpolation with guassians in the 
form 

(43) 

The 3-dimensional version of the Poisson summation formula shows that (43) can 
be replaced by 

with an error which consists of three terms each of which is similar in form to (34). 
As before this error is usually negligible if a2h. Iff(r’) is expanded about the point 
r, it is easy to show that (44) interpolates with error of O(a*). We could improve 
the order of accuracy by writing the gaussian as a product of three gaussians, one 
for each dimension, but it is more interesting to deal directly with the 3-dimensional 
gaussian. From (44) 

Jr, a) =f(r) + F(r) a2 + . . . , 

so that, by changing the parameter a to A 

j+(r,A)=f(r)+F(r)A’+ .*. 

We can combine these two expressions to remove the first error terms which is 
equivalent to using the kernel 

IY(u,4A)= i $a”,+&(“,A) /(A*-.*) I 
where Q(u, a) is the gaussian kernel in (44). Taking the limit as A -+ a we find 

Lim Y=$ 
A+0 1 

5Q(u,a)-a$ , 
I 

581/60/2-7 
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and the new kernel 

J. J. MONAGHAN 

For the general case of n dimensions we find 

W(u,a)=f[(n+2)Q(u,a)-a-]. 

Replacing Q by the gaussian we find the new kernel 

1 
713/2e 

- &a2 5 u2 [ 1 --- . 
2 a2 

(47) 

(48) 

Other interpolation formula, with a kernel depending on (r - rik,), as in (43), can be 
treated in a similar way. Care must always be taken however to ensure the switch 
from summation to integration is valid. 
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